OKLAHOMASTATE UNIVERSITY
SChOOL OF eLECTRICAL AND COMPUTER ENGINEERING

ECEN/MAE 5713 Linear Systems
Spring 2011
Final Exam

Choose any four out of five problems.
Please specify which four listed below to be graded:

Name: \qquad

E-Mail Address:

Problem 1:

Find a minimal controllable canonical form realization (i.e., its simulation diagram and state space representation) for the following system described by

$$
H(s)=\left[\begin{array}{c}
\frac{2 s}{s^{3}+6 s^{2}+11 s+6} \\
\frac{s^{2}+2 s+2}{s^{4}+6 s^{3}+9 s^{2}+4 s}
\end{array}\right]
$$

Problem 2:

Let

$$
S=\left\{x \in \mathfrak{R}^{3} \left\lvert\, x=\alpha\left[\begin{array}{lll}
1 & 0 & 2
\end{array}\right]+\beta\left[\begin{array}{lll}
2 & 0 & 4
\end{array}\right]\right., \alpha, \beta \in \mathfrak{R}\right\},
$$

find the orthogonal complement space of $S, S^{\perp}\left(\subset \mathfrak{R}^{3}\right)$, and determine an orthonormal basis and dimension for S^{\perp}. For $x=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\left(\in \mathfrak{R}^{3}\right)$, find its direct sum representation (i.e., x_{1} and x_{2}) of $x=x_{1} \oplus x_{2}$, such that $x_{1} \in S, x_{2} \in S^{\perp}$.

Problem 3:

Find the state transition matrix of

$$
\dot{x}=\left[\begin{array}{cc}
-\sin t & 0 \\
0 & -\cos t
\end{array}\right] x .
$$

Problem 4:

Let

$$
A=\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Find $e^{A t}$.

Problem 5:

Consider

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

and its adjoint system

$$
\begin{aligned}
& \dot{z}=-A^{T} z+C^{T} v . \\
& w=B^{T} z
\end{aligned}
$$

Show

$$
H(s)=-H_{a}^{T}(-s),
$$

where $H(s)$ and $H_{a}(s)$ are their transfer function matrices, respectively.

